题目内容

12.门老师发给甲班每人4本故事书,乙班每人3本故事书,共发故事书716本;若发给甲班每人3本故事书,乙班每人4本故事书,则共发705本.两班共有203人.√(判断对错)

分析 首先根据题意,如果甲班比乙班每人多发1本故事书,则共发故事书716本;如果甲班比乙班每人少发1本故事书,则共发故事书705本,所以甲班比乙班的人数多,甲班比乙班每多1人,则甲班就比乙班多发1本故事书,据此判断出甲班比乙班多11(716-705=11)人,设甲班有x人,则乙班有x-11人;然后根据:甲班的人数×4+乙班的人数×3=716,列出方程,求出甲班有多少人;然后用甲班的人数减去11,求出乙班有多少人,再把两个班的人数求和,求出两班一共有多少人即可.

解答 解:甲班比乙班多:
716-705=11(人)
设甲班有x人,则乙班有x-11人,
4x+3(x-11)=716
       7x-33=716
    7x-33+33=716+33
          7x=749
       7x÷7=749÷7
           x=107
107-11+107
=96+107
=203(人)
答:两班共有203人.

点评 此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网