题目内容
| 解方程. (1)
|
(2)
|
(3)X+
|
分析:(1)运用乘法分配律改写成(
+
)X=
,即
X=
,再根据等式的性质,两边同乘
即可;
(2)根据等式的性质,两边同加上
X,得
+
X=
,两边同减去
,再同乘4即可;
(3)根据等式的性质,两边同减去
即可.
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
| 4 |
| 3 |
| 4 |
| 4 |
| 9 |
(2)根据等式的性质,两边同加上
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 6 |
(3)根据等式的性质,两边同减去
| 1 |
| 4 |
解答:解:(1)
X+
X=
,
(
+
)X=
,
X=
,
X×
=
×
,
X=
;
(2)
-
X=
,
-
X+
X=
+
X,
+
X=
,
+
X-
=
-
,
X=
,
X×4=
×4,
X=
;
(3)X+
=
,
X+
-
=
-
,
X=
.
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
(
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
| 4 |
| 3 |
| 4 |
| 9 |
| 4 |
| 4 |
| 9 |
| 3 |
| 4 |
| 4 |
| 9 |
X=
| 1 |
| 3 |
(2)
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 6 |
| 3 |
| 4 |
| 1 |
| 6 |
| 1 |
| 4 |
| 7 |
| 12 |
| 1 |
| 4 |
| 7 |
| 12 |
X=
| 7 |
| 3 |
(3)X+
| 1 |
| 4 |
| 4 |
| 5 |
X+
| 1 |
| 4 |
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 4 |
X=
| 11 |
| 20 |
点评:此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),等式两边仍相等,同时注意“=”要对齐.
练习册系列答案
相关题目