题目内容
两千多年前,古埃及人总喜欢把分数转化为分子是1的分数来计算,所以后人常把分子是1的分数称为埃及分数.埃及分数在计算中有着一些什么规律呢?请观察下面几组算式并填空:
(1)
-
=
=
-
=
=
-
=
=
-
=
…
-
=
-
=
(2)请你根据上面的规律,把下面各个分数写成两个分数的差.
=
-
=
-
=
-
=
-
=
-
=
-
=
-
=
-
.
(1)
| 1 |
| 3 |
| 1 |
| 4 |
| (4)-(3) |
| 3×4 |
| 1 |
| 3×4 |
| 1 |
| 7 |
| 1 |
| 8 |
| ( )-( ) |
| 7×8 |
| 1 |
| 7×8 |
| 1 |
| 20 |
| 1 |
| 21 |
| ( )-( ) |
| 20×21 |
| 1 |
| 20×21 |
| 1 |
| 100 |
| 1 |
| 101 |
| ( ) |
| ( ) |
…
| 1 |
| a |
| 1 |
| a+1 |
| a+1 |
| a?a+1 |
| 1 |
| a?(a+1) |
| 1 |
| a?(a+1) |
(2)请你根据上面的规律,把下面各个分数写成两个分数的差.
| 1 |
| 2×3 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| 5×6 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| 40×41 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| 1999×2000 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| 42 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| 9900 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| 72 |
| 1 |
| ( ) |
| 1 |
| ( ) |
| 1 |
| n?(n+1) |
| 1 |
| ( ) |
| 1 |
| ( ) |
分析:(1)根据异分母的分数减法法则:先通分,再按照同分母的分数减法法则计算即可;
(2)逆用(1)中的规律即可求解.
(2)逆用(1)中的规律即可求解.
解答:解:
-
=
=
,
-
=
=
,
-
=
=
;
=
-
,
=
-
,
=
-
,
=
-
,
=
-
,
=
-
,
=
-
,
=
-
.
| 1 |
| 7 |
| 1 |
| 8 |
| 8-7 |
| 7×8 |
| 1 |
| 7×8 |
| 1 |
| 20 |
| 1 |
| 21 |
| 21-20 |
| 20×21 |
| 1 |
| 20×21 |
| 1 |
| 100 |
| 1 |
| 101 |
| 101-100 |
| 100×101 |
| 1 |
| 100×101 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5×6 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 40×41 |
| 1 |
| 40 |
| 1 |
| 41 |
| 1 |
| 1999×2000 |
| 1 |
| 1999 |
| 1 |
| 2000 |
| 1 |
| 42 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 9900 |
| 1 |
| 99 |
| 1 |
| 100 |
| 1 |
| 72 |
| 1 |
| 8 |
| 1 |
| 9 |
| 1 |
| n?(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
点评:考查了算术中的规律,关键是熟悉:
=
-
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目