题目内容

两个三角形(如图)重叠在一起,重叠部分面积占大三角形A的
1
6
,占小三角形B的
1
4
.大三角形A与小三角形B的面积比是(  )
A、3:2
B、2:3
C、
1
6
1
4
考点:重叠问题,比的意义
专题:平面图形的认识与计算
分析:根据题干,设大三角形的面积是a,小三角形的面积是b,则大三角形的
1
6
=小三角形的
1
4
,据此即可得出比例式,从而求出a与b的比.
解答: 解:设大三角形的面积是a,小三角形的面积是b,
1
6
a=
1
4
b
 a:b=
1
4
1
6

则a:b=3:2
答:大三角形A与小三角形B的面积比是3:2.
故选:A.
点评:解答此题的关键是明确等量关系:大三角形的
1
6
=小三角形的
1
4
,从而列出比例式求出它们的面积之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网