题目内容
| 解方程: χ÷
|
χ+
| ||||||||
5χ-
|
5X-3×
| ||||||||
5-
|
2X-
|
分析:(1)根据等式的性质,方程两边同时乘上
求解即可;
(2)先化简方程的左边,得到
χ=13,再根据等式的性质,方程两边同时乘上
求解即可;
(3)根据等式的性质,方程两边同时加上
,再同时除以5求解即可;
(4)先化简方程的左边,得到5X-
=
,根据等式的性质,方程两边同时加上
,再同时除以5求解即可;
(5)根据等式的性质,方程两边同时加上
X,再减去
,最后同时乘上
求解即可;
(6)先化简方程的左边,得到
X=
,根据等式的性质,方程两边同时乘上
求解即可.
| 11 |
| 21 |
(2)先化简方程的左边,得到
| 13 |
| 10 |
| 10 |
| 13 |
(3)根据等式的性质,方程两边同时加上
| 5 |
| 6 |
(4)先化简方程的左边,得到5X-
| 30 |
| 7 |
| 5 |
| 7 |
| 30 |
| 7 |
(5)根据等式的性质,方程两边同时加上
| 2 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
(6)先化简方程的左边,得到
| 2 |
| 3 |
| 1 |
| 2 |
| 3 |
| 2 |
解答:解:(1)χ÷
=
χ÷
×
=
×
χ=
;
(2)χ+
χ=13
χ=13
χ×
=13×
χ=10;
(3)5χ-
=
5χ-
+
=
+
5χ÷5=1÷5
χ=
;
(4)5X-3×
=
5X-
=
5X-
+
=
+
5X÷5=5÷5
X=1;
(5)5-
X=
5-
X+
X=
+
X
5-
=
+
X-
X×
=
×
X=7;
(6)2X-
X=
X=
X×
=
×
X=
.
| 11 |
| 21 |
| 7 |
| 33 |
χ÷
| 11 |
| 21 |
| 11 |
| 21 |
| 7 |
| 33 |
| 11 |
| 21 |
χ=
| 1 |
| 9 |
(2)χ+
| 3 |
| 10 |
| 13 |
| 10 |
| 13 |
| 10 |
| 10 |
| 13 |
| 10 |
| 13 |
χ=10;
(3)5χ-
| 5 |
| 6 |
| 1 |
| 6 |
5χ-
| 5 |
| 6 |
| 5 |
| 6 |
| 1 |
| 6 |
| 5 |
| 6 |
5χ÷5=1÷5
χ=
| 1 |
| 5 |
(4)5X-3×
| 10 |
| 7 |
| 5 |
| 7 |
5X-
| 30 |
| 7 |
| 5 |
| 7 |
5X-
| 30 |
| 7 |
| 30 |
| 7 |
| 5 |
| 7 |
| 30 |
| 7 |
5X÷5=5÷5
X=1;
(5)5-
| 2 |
| 3 |
| 1 |
| 3 |
5-
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
5-
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 3 |
| 2 |
| 14 |
| 3 |
| 3 |
| 2 |
X=7;
(6)2X-
| 4 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
X=
| 3 |
| 4 |
点评:解方程的依据是等式的性质:方等式的两边同加上或(同减去)同一个数,同乘或同除以一个不为零的数,等式仍然成立.
练习册系列答案
相关题目