题目内容
27-27×
|
999×999+1999; | 17÷51+(
|
分析:①27-27×
,将原式转化为:27×(1-
),再运用乘法分配律简算;
②999×999+1999,把1999分解为999+1000然后运用乘法分配律进行简算即可.
③17÷51+(
+
)×17,运用乘法分配律简算.
| 16 |
| 17 |
| 16 |
| 17 |
②999×999+1999,把1999分解为999+1000然后运用乘法分配律进行简算即可.
③17÷51+(
| 1 |
| 68 |
| 2 |
| 51 |
解答:解:①27-27×
=27×(1-
)
=27×
=1
;
②999×999+1999
=999×999+999+1000
=999×(999+1)+1000
=999×1000+1000
=999000+1000
=1000000;
③17÷51+(
+
)×17
=
+
×17+
×17
=
+
+
=
+
+
=1+
=1
.
| 16 |
| 17 |
=27×(1-
| 16 |
| 17 |
=27×
| 1 |
| 17 |
=1
| 10 |
| 17 |
②999×999+1999
=999×999+999+1000
=999×(999+1)+1000
=999×1000+1000
=999000+1000
=1000000;
③17÷51+(
| 1 |
| 68 |
| 2 |
| 51 |
=
| 17 |
| 51 |
| 1 |
| 68 |
| 2 |
| 51 |
=
| 17 |
| 51 |
| 2×17 |
| 51 |
| 1 |
| 4 |
=
| 17 |
| 51 |
| 34 |
| 51 |
| 1 |
| 4 |
=1+
| 1 |
| 4 |
=1
| 1 |
| 4 |
点评:完成本题要注意分析式中数据,运用合适的简便方法计算.
练习册系列答案
相关题目