题目内容
计算:
(2
+3
)-(1.375-
)=
832
÷0.3
53.3÷0.23÷0.91×16.1÷0.82=
+
+
+
=
(2
| 1 |
| 7 |
| 1 |
| 8 |
| 6 |
| 7 |
832
| 79 |
| 125 |
53.3÷0.23÷0.91×16.1÷0.82=
| 2014+2013×2015 |
| 2014×2015-1 |
| 2015+2014×2016 |
| 2015×2016-1 |
| 2016+2015×2017 |
| 2016×2017-1 |
| 2017+2016×2018 |
| 2017×2018-1 |
考点:加减法中的巧算,乘除法中的巧算,分数的巧算
专题:计算问题(巧算速算)
分析:(1)运用减法的性质以及加法交换律与结合律简算.
(2)根据数据特点,把分数进行灵活拆分,从而达到简算的目的.
(3)通过分析式中数据可知,53.3能被0.82除尽,16.1能被0.23除尽,由此根据交换律及结合律进行巧算即可.
(4)通过观察,每个分数的分子与分母有相同之处,因此,可把分子与分母变成部分相同或全部相同,然后进行计算.
(2)根据数据特点,把分数进行灵活拆分,从而达到简算的目的.
(3)通过分析式中数据可知,53.3能被0.82除尽,16.1能被0.23除尽,由此根据交换律及结合律进行巧算即可.
(4)通过观察,每个分数的分子与分母有相同之处,因此,可把分子与分母变成部分相同或全部相同,然后进行计算.
解答:
解:(1)(2
+3
)-(1.375-
)
=(2
+3
)-(1
-
)
=2
+3
-1
+
=(2
+
)+(3
-1
)
=3+1
=4
(2)832
÷0.3
=(831+
)÷0.3
=831÷0.3+
÷0.3
=2770+
×
=2770+
=2770
(3)53.3÷0.23÷0.91×16.1÷0.82
=53.3÷0.82×(16.1÷0.23)÷0.91
=65×70÷0.91
=13×5×10×7÷0.7÷1.3
=10×5×10×10
=5000
(4)
+
+
+
=
+
+
+
=
+
+
+
=1+1+1+1
=4
| 1 |
| 7 |
| 1 |
| 8 |
| 6 |
| 7 |
=(2
| 1 |
| 7 |
| 1 |
| 8 |
| 3 |
| 8 |
| 6 |
| 7 |
=2
| 1 |
| 7 |
| 1 |
| 8 |
| 3 |
| 8 |
| 6 |
| 7 |
=(2
| 1 |
| 7 |
| 6 |
| 7 |
| 1 |
| 8 |
| 3 |
| 8 |
=3+1
| 3 |
| 4 |
=4
| 3 |
| 4 |
(2)832
| 79 |
| 125 |
=(831+
| 204 |
| 125 |
=831÷0.3+
| 204 |
| 125 |
=2770+
| 204 |
| 125 |
| 3 |
| 10 |
=2770+
| 276 |
| 575 |
=2770
| 276 |
| 575 |
(3)53.3÷0.23÷0.91×16.1÷0.82
=53.3÷0.82×(16.1÷0.23)÷0.91
=65×70÷0.91
=13×5×10×7÷0.7÷1.3
=10×5×10×10
=5000
(4)
| 2014+2013×2015 |
| 2014×2015-1 |
| 2015+2014×2016 |
| 2015×2016-1 |
| 2016+2015×2017 |
| 2016×2017-1 |
| 2017+2016×2018 |
| 2017×2018-1 |
=
| 2014+(2014-1)×2015 |
| 2014×2015-1 |
| 2015+(2015-1)×2016 |
| 2015×2016-1 |
| 2016+(2016-1)×2016 |
| 2016×2017-1 |
| 2017+(2017-1)×2017 |
| 2017×2018-1 |
=
| 2014×2015-1 |
| 2014×2015-1 |
| 2015×2016-1 |
| 2015×2016-1 |
| 2016×2017-1 |
| 2016×2017-1 |
| 2017×2018-1 |
| 2017×2018-1 |
=1+1+1+1
=4
点评:此题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.
练习册系列答案
相关题目