题目内容
把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有
3
3
个.分析:把4,32,58,65,94分别分解质因数,求出质因数每个数位上的数字和,和原数每个数位上的数字的和,如果相等就是史密斯数,否则就不是.
解答:解:4=2×2,
2+2=4,
所以4是史密斯数;
32=2×2×2×2×2;
2+2+2+2+2=10,而3+2=5;
10≠5,32不是史密斯数;
58=2×29,
2+2+9=13=13;
所以58是史密斯数;
65=5×13;
5+1+3=9;
6+5=11;
9≠11,65不是史密斯数;
94=2×47
2+4+7=13=9+4;
所以94是史密斯数.
史密斯数有4,58,94一共是3个.
故答案为:3.
2+2=4,
所以4是史密斯数;
32=2×2×2×2×2;
2+2+2+2+2=10,而3+2=5;
10≠5,32不是史密斯数;
58=2×29,
2+2+9=13=13;
所以58是史密斯数;
65=5×13;
5+1+3=9;
6+5=11;
9≠11,65不是史密斯数;
94=2×47
2+4+7=13=9+4;
所以94是史密斯数.
史密斯数有4,58,94一共是3个.
故答案为:3.
点评:本题关键是理解史密斯数的含义,从中得出寻找史密斯数的方法,再根据这个方法进行求解.
练习册系列答案
相关题目