11. (05全国卷Ⅱ)已知a≥ 0 ,函数f(x) = (
-2ax )
(1) 当X为何值时,f(x)取得最小值?证明你的结论;
(2)设 f(x)在[ -1,1]上是单调函数,求a的取值范围.
解:(I)对函数
求导数得![]()
令
得[
+2(1-
)
-2
]
=0从而
+2(1-
)
-2
=0
解得 ![]()
当
变化时,
、
的变化如下表
|
|
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
递增 |
极大值 |
递减 |
极小值 |
递增 |
∴
在
=
处取得极大值,在
=
处取得极小值。
当
≥0时,
<-1,![]()
在
上为减函数,在
上为增函数
而当
时
=
,当x=0时,![]()
所以当
时,
取得最小值
(II)当
≥0时,
在
上为单调函数的充要条件是![]()
即
,解得![]()
![]()
于是
在[-1,1]上为单调函数的充要条件是![]()
即
的取值范围是![]()
例4、已知曲线
=
=
,在它对应于![]()
[0,2]的弧段上求一点P,使得曲线在该点的切线在
轴上的截距为最小,并求出这个最小值。
例5、设工厂A到铁路的垂直距离为20km,垂足为B,铁路线上距离B100km的地方有一个原料供应站C,现在要从BC中间某处D向工厂修一条公路,使得原料供应站C到工厂A所需运费最省。问D应选在何处?已知每一公里的铁路运费与公路运费之比为3:5。