摘要:直线的方程是指( ) A.直线上点的坐标都是方程的解 B.以方程的解为坐标的点都在直线上 C.直线上点的坐标都是方程的解.且以方程的解为坐标的点都在直线上 D.以上都不对
网址:http://m.1010jiajiao.com/timu_id_4436230[举报]
设
、
为直角坐标平面内x、y轴正方向上的单位向量,若向量
,
,(x,y∈R,m≥2),且
.
(1)求动点M(x,y)的轨迹方程?并指出方程所表示的曲线;
(2)已知点A(0,1},设直线l:y=
x-3与点M的轨迹交于B、C两点,问是否存在实数m,使得
?若存在,求出m的值;若不存在,说明理由.
查看习题详情和答案>>
(1)求动点M(x,y)的轨迹方程?并指出方程所表示的曲线;
(2)已知点A(0,1},设直线l:y=
查看习题详情和答案>>
已知点
是直角坐标平面内的动点,点
到直线
的距离为
,到点
的距离为
,且
.
(1)求动点P所在曲线C的方程;
(2)直线
过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线
的垂线,对应的垂足分别为
,试判断点F与以线段
为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记
,
,
(A、B、
是(2)中的点),问是否存在实数
,使
成立.若存在,求出
的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线
、点
、曲线C:
,则使等式
成立的
的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
| x2 |
| 2b2 |
| y2 |
| b2 |
| 1 |
| 8 |
(1)求点G和点F1的坐标(用b表示);
(2)求满足条件的椭圆方程和抛物线方程;
(3)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). 查看习题详情和答案>>
已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
=
.
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
、点F(-c,0)、曲线C:
+
=1(a>b>0,c=
),则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
查看习题详情和答案>>
| d2 |
| d1 |
| ||
| 2 |
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
| a2 |
| c |
| x2 |
| a2 |
| y2 |
| b2 |
| a2-b2 |