摘要:18.已知在n的展开式中.第6项为常数项. (1)求n, (2)求含x2的项的系数, (3)求展开式中所有的有理项. 解:(1)通项公式为Tr+1=Cx(-)rx- =C(-)rx. 因为第6项为常数项.所以r=5时. 有=0.即n=10. (2)令=2.得r=(n-6)=2. ∴所求的系数为C(-)2=. (3)根据通项公式.由题意得 令=k(k∈Z).则10-2r=3k.即r=5-k. ∵r∈Z.∴k应为偶数. ∴k可取2,0.-2.即r可取2,5,8. 所以第3项.第6项与第9项为有理项.它们分别为T3=x2.T6=.T9=x-2.
网址:http://m.1010jiajiao.com/timu_id_4430948[举报]
(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
|=6,
=
•
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1,
=
+
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
=3
,S△PAQ=-26tan∠PAQ求直线L的方程.
查看习题详情和答案>>
设平面直角坐标中,O为原点,N为动点,|
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
| OP |
| OA |