摘要:3. 实数m在什么范围.方程有四个互不相同的实数根.
网址:http://m.1010jiajiao.com/timu_id_4392811[举报]
(2008•海珠区一模)已知函数f(x)=x3+3ax-1
(1)若函数y=f(x)在x=-1时有与x轴平行的切线,求f(x)的表达式;
(2)设g(x)=
[af'(x)-3a2+3],其中f-1(x)是f(x)的导函数,若函数g(x)的图象与直线y=x相切,求a的值;
(3)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
查看习题详情和答案>>
(1)若函数y=f(x)在x=-1时有与x轴平行的切线,求f(x)的表达式;
(2)设g(x)=
| 1 | 3 |
(3)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点. 查看习题详情和答案>>
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点. 查看习题详情和答案>>
已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是f(x)的导函数.
(1)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(2)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
查看习题详情和答案>>