摘要:答案: x≥1 解析:因x≤0.所以x2≥0.3x2+1≥1.即y≥1.又由x≤0及y=3x2+1求得x=-(y≥1).故所求函数的反函数为y=.
网址:http://m.1010jiajiao.com/timu_id_4392382[举报]
(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
| 1 |
| x+a |
学生甲:在一个坐标系内作出函数f(x)=
| 1 |
| x+a |
学生乙:在坐标平面内作出函数f(x)=x+a+
| 1 |
| x+a |
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
查看习题详情和答案>>
已知向量
=(4,3),
=(-1,2),若向量
+k
与
-
垂直,则k的值为( )
考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:根据向量坐标运算的公式,结合
=(4,3),
=(-1,2),可得向量
+k
与
-
的坐标.再根据向量
+k
与
-
互相垂直,得到它们的数量积等于0,利用两个向量数量积的坐标表达式列方程,解之可得k的值.∵
=(4,3),
=(-1,2)∴
+k
=(4-k,3+2k),
-
=(5,1)∵向量
+k
与
-
查看习题详情和答案>>
| a |
| b |
| a |
| b |
| a |
| b |
A.
| B.7 |
下列人类所需的营养物质中,既不参与构成人体细胞,也不为人体提供能量的是,答案:0,选项:维生素,选项:水,选项:无机盐,... - 初中生物 - 精英家教网
.artpreview dt{background:#fff;color:#000}#cont{background:#fff url(http://img.jyeoo.net/images/body_bg.jpg) repeat-x;margin:0}
function initJavaScriptCallback() { QuesCart.init("bio", true); }
var imageRootUrl="http://img.jyeoo.net/",wwwRootUrl="http://www.jyeoo.com/",blogRootUrl="http://blog.jyeoo.com/",spaceRootUrl="http://space.jyeoo.com/",loginUrl="http://www.jyeoo.com/",logoutUrl="http://www.jyeoo.com/account/logoff",scriptsUrl="http://img.jyeoo.net/scripts/",isMobile=false;var mustyleAttr={color:"#000000",fontsize:"13px",fontfamily:"arial",displaystyle:"true"};document.domain="jyeoo.com";$.ajaxSetup({cache:true});C.-
| D.-
|
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
initJavaScript();
充值|设为首页|免费注册|登录
在线问答在线组卷在线训练 精英家教网 更多试题 》试题下列人类所需的营养物质中,既不参与构成人体细胞,也不为人体提供能量的是( )
故选:A点评:解答此题的关键是熟练掌握人体需要的营养物质及其作用.答题:xushifeng老师 隐藏解析在线训练 |