网址:http://m.1010jiajiao.com/timu_id_4392316[举报]
函数f(x)=cos2x+sinxcosx的最大值是( )
A.2 B. C. D.
[答案] C
[解析]
【答案】
【解析】设,有几何意义知的最小值为, 又因为存在实数x满足,所以只要2大于等于f(x)的最小值即可.即2,解得:∈,所以a的取值范围是.故答案为:.
解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
解析:对任意x1,x2∈[0,+∞)(x1≠x2),有<0,实际上等价于函数f(x)在[0,+∞)上是减函数,故f(3)<f(2)<f(1),由于函数是偶函数,故f(3)<f(-2)<f(1).