摘要:问题1.设直线过双曲线的一个焦点.交双曲线于.两点.为坐标原点.若.求的值. 问题2.过抛物线()的焦点作一条直线交抛物线于.. 两点.设直线的倾斜角为.求证:, 问题3.(湖北)直线:与双曲线:的右支交于不同的两点..(Ⅰ)求实数的取值范围,(Ⅱ)是否存在实数.使得以线段为直径的圆经过双曲线的右焦点?若存在.求出的值,若不存在.说明理由. 问题4. (天津质检)已知中心在原点.焦点在轴上的一个椭圆与圆 交于.两点.恰是该圆的直径.且的斜率为. 求此椭圆的方程.
网址:http://m.1010jiajiao.com/timu_id_4389684[举报]
(文)设F1、F2分别为椭圆C:
(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.
查看习题详情和答案>>
(1)若椭圆C上的点A(1,
(2)如果点P是(1)中所得椭圆上的任意一点,且
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
查看习题详情和答案>>
(文)设F1、F2分别为椭圆C:
+
=1(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
•
=0,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
-
=1(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.
查看习题详情和答案>>
| x2 |
| m2 |
| y2 |
| n2 |
(1)若椭圆C上的点A(1,
| 3 |
| 2 |
(2)如果点P是(1)中所得椭圆上的任意一点,且
| PF1 |
| PF2 |
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
| x2 |
| a2 |
| y2 |
| b2 |
(2007•杨浦区二模)(文)设F1、F2分别为椭圆C:
+
=1(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
•
=0,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
-
=1(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.
查看习题详情和答案>>
| x2 |
| m2 |
| y2 |
| n2 |
(1)若椭圆C上的点A(1,
| 3 |
| 2 |
(2)如果点P是(1)中所得椭圆上的任意一点,且
| PF1 |
| PF2 |
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
| x2 |
| a2 |
| y2 |
| b2 |