摘要:问题1.(山东)已知定义在上的奇函数满足.则的值为 问题2.(上海) 设的最小正周期且为偶函数, 它在区间上的图象如右图所示的线段,则在区间上, 已知函数是周期为的函数.当时.. 当 时.的解析式是 是定义在上的以为周期的函数.对.用表示区间. 已知当时..求在上的解析式. 问题3.(福建)定义在上的函数满足.当时. .则 , , (天津文) 设是定义在上以为周期的函数.在内单调递减. 且的图像关于直线对称.则下面正确的结论是 问题4.定义在上的函数.对任意.有.且.求证:,判断的奇偶性, 若存在非零常数,使.①证明对任意都有成立, ②函数是不是周期函数.为什么? 问题5.(全国)设是定义在上的偶函数.其图象关于直线对称.对任 意的.都有. 设.求.,证明:是周期函数. 记.求.
网址:http://m.1010jiajiao.com/timu_id_4389442[举报]
(2009•金山区二模)设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=-
,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+
)2+
,
当x=-
时,u有最大值,umax=
,显然u没有最小值,
∴当x=-
时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
查看习题详情和答案>>
材料:已知函数g(x)=-
| 1 |
| f(x) |
解:令u=-f(x)=-x2-x,则u=-(x+
| 1 |
| 2 |
| 1 |
| 4 |
当x=-
| 1 |
| 2 |
| 1 |
| 4 |
∴当x=-
| 1 |
| 2 |
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
| f(n) |
| 2n-1 |
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
| (u+v)2 |
| 2 |
材料:已知△LMN内接于边长为1的正三角形ABC,求证:△LMN中至少有一边的长不小于
| 1 |
| 2 |
证明:线段AN、AL、BL、BM、CM、CN的长分别设为a1、a2、b1、b2、c1、c2,设LN、LM、MN的长为x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2
…
请利用(1)的结论,把证明过程补充完整;
(3)已知n边形A1′A2′A3′…An′内接于边长为1的正n边形A1A2…An,(n≥4),思考会有相应的什么结论?请提出一个的命题,并给与正确解答.
注意:第(3)题中所提问题单独给分,解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
(1)若已知n位居民中月均用水量小于1吨的人数是12,求n位居民中月均用水量分别在区间[2,2.5)和[2.5,3)内的人数;
(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间[2,2.5)或[2.5,3)内的概率.(精确到0.01.参考数据:0.619≈0.012,0.6110≈0.0071) 查看习题详情和答案>>
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到第几月末公司累积利润可达到30万元;
(3)求第八个月该公司所获利润是多少万元?
设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=
,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+
)2+
,
当x=-
时,u有最大值,umax=
,显然u没有最小值,
∴当x=-
时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
查看习题详情和答案>>
材料:已知函数g(x)=
解:令u=-f(x)=-x2-x,则u=-(x+
当x=-
∴当x=-
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.
查看习题详情和答案>>