网址:http://m.1010jiajiao.com/timu_id_4383176[举报]
解析:由题意知
当-2≤x≤1时,f(x)=x-2,
当1<x≤2时,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定义域上都为增函数,
∴f(x)的最大值为f(2)=23-2=6.
答案:C
解析 观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是2,因此对正实数m,n都成立的条件不等式是:若m,n∈R+,则当m+n=20时,有+<2.
答案 若m,n∈R+,则当m+n=20时,有+<2