摘要:19. 已知数列中.=1, , (1)是否存在常数.使得数列是等比数列.若存在.求的值.若不存在.说明理由. (2)设.数列的前n项和为.是否存在常数c,使得 成立?并证明你的结论. (3)设.,证明<<. 解:(1)设可化为. 即.故.得. 又.所以存在.使得数列是等比数列. 得.得.所以. 要使得成立. 则有.得.所以.存在常数.使得成立. (3)证明:因为.所以.而. 所以. 又当时..符合. 当时.. 得. 综上.<<得证.
网址:http://m.1010jiajiao.com/timu_id_4381851[举报]
(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=
其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由。
查看习题详情和答案>>(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=
其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由。
查看习题详情和答案>>(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=
其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由。