摘要:19.设数列{an}的各项为正数.若对任意的正整数n, an与2的等差中项等于其前n项和n与2的等比中项.求{an}的通项公式.
网址:http://m.1010jiajiao.com/timu_id_4381178[举报]
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
+
+…+
<2;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>
恒成立,求这样的正整数m共有多少个?
查看习题详情和答案>>
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>
| ||
| 2 |
设数列{an}的各项都是正数,记Sn为数列{an}的前n项和,且对任意n∈N*,都有a13+a23+a33+…+an3=Sn2.
(Ⅰ)求证:an2=2Sn-an;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意 n∈N*,都有bn+1>bn. 查看习题详情和答案>>
(Ⅰ)求证:an2=2Sn-an;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意 n∈N*,都有bn+1>bn. 查看习题详情和答案>>
设数列{an}的各项都是正数,且对任意n∈N*,都有a13+a23+a33+…+=Sn2,其中Sn为数列{an}的前n项和.
(I)求证:an2=2Sn-an;
(II)求数列{an}的通项公式;
(III)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn,若存在,求出λ的值;若不存在,说明理由. 查看习题详情和答案>>
(I)求证:an2=2Sn-an;
(II)求数列{an}的通项公式;
(III)若bn=3n+(-1)n-1λ•2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn,若存在,求出λ的值;若不存在,说明理由. 查看习题详情和答案>>