摘要:掌握直线与圆锥曲线的位置关系的判断方法.能够正确熟练地解决与直线和圆锥曲线的位置关系相关的一些问题.这类问题常涉及到圆锥曲线的性质和直线的基本知识点.线段的中点.弦长.垂直问题.因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.
网址:http://m.1010jiajiao.com/timu_id_4355956[举报]
下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
-y2=1有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
=1的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
=1和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有
查看习题详情和答案>>
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
| x2 |
| 4 |
④过双曲线x2-
| y2 |
| 2 |
⑤已知双曲线x2-
| y2 |
| 2 |
其中说法正确的序号有
①②④
①②④
.(请写出所有正确的序号)
下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
有且只有一个公共点,这样的直线有3条;
④过双曲线
的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线
和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有 .(请写出所有正确的序号) 查看习题详情和答案>>
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
④过双曲线
⑤已知双曲线
其中说法正确的序号有 .(请写出所有正确的序号) 查看习题详情和答案>>
下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
-y2=1有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
=1的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
=1和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有______.(请写出所有正确的序号)
查看习题详情和答案>>
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
| x2 |
| 4 |
④过双曲线x2-
| y2 |
| 2 |
⑤已知双曲线x2-
| y2 |
| 2 |
其中说法正确的序号有______.(请写出所有正确的序号)