摘要:3.将1-9这9个不同的数字分别填入右图中的方格中.要求每行自左至右数字从小到大排.每列自上到下数字也从小到大排.并且5排在正中的方格.则不同的填法共有 A.24种 B.20种 C.18种 D.12种
网址:http://m.1010jiajiao.com/timu_id_4345972[举报]
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(1)求此运动员射击的环数的平均值;
(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为m次、n次,每个基本事件为(m,n),求事件“m+n≥10”的概率. 查看习题详情和答案>>
| 环数 | 7 | 8 | 9 | 10 |
| 命中次数 | 2 | 7 | 8 | 3 |
(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为m次、n次,每个基本事件为(m,n),求事件“m+n≥10”的概率. 查看习题详情和答案>>
附加题(必做题)
在0,1,2,3,…,9这十个自然数中,任取3个不同的数字.
(1)求组成的三位数中是3的倍数的有多少个?
(2)将取出的三个数字按从小到大的顺序排列,设ξ为三个数字中相邻自然数的组数(例如:若取出的三个数字为0,1,2,则相邻的组为0,1和1,2,此时ξ的值是2),求随机变量ξ的分布列及其数学期望Eξ.
查看习题详情和答案>>
在0,1,2,3,…,9这十个自然数中,任取3个不同的数字.
(1)求组成的三位数中是3的倍数的有多少个?
(2)将取出的三个数字按从小到大的顺序排列,设ξ为三个数字中相邻自然数的组数(例如:若取出的三个数字为0,1,2,则相邻的组为0,1和1,2,此时ξ的值是2),求随机变量ξ的分布列及其数学期望Eξ.
(本小题满分12分)
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
|
环数 |
7 |
8 |
9 |
10 |
|
命中次数 |
2 |
7 |
8 |
3 |
(1)求此运动员射击的环数的平均值;
(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为
次、
次,每个基本事件为
,求事件
的概率。
查看习题详情和答案>>
(本小题满分12分)
一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,
,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表
|
摸球总次数 |
10 |
20 |
30 |
60 |
90 |
120 |
180 |
240 |
330 |
450 |
|
“和为7”出现的频数 |
1 |
9 |
14 |
24 |
26 |
37 |
58 |
82 |
109 |
150 |
|
“和为7”出现的频率 |
0.10 |
0.45 |
0.47 |
0.40 |
0.29 |
0.31 |
0.32 |
0.34 |
0.33 |
0.33 |
(参考数据:
)
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求
的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量
元,求
的数学期望和方差。
查看习题详情和答案>>