摘要: 解:( 1)由已知得:解得 c=3,b=2 ∴抛物线的线的解析式为 (2)由顶点坐标公式得顶点坐标为(1.4) 所以对称轴为x=1,A,E关于x=1对称.所以E(3,0) 设对称轴与x轴的交点为F 所以四边形ABDE的面积= = = =9 (3)相似 如图.BD= BE= DE= 所以, 即: ,所以是直角三角形 所以,且, 所以.
网址:http://m.1010jiajiao.com/timu_id_4332094[举报]
已知:抛物线y=-x2+(m+2)x+m-1与x轴交于A、B两点(点A、B分别在原点O的左、右两侧),以OA、OB为直径作⊙O1和⊙O2.
(1)请问:⊙O1和⊙O2,能否为等圆?若能,求出其半径的长度;若不能,说明理由;
(2)设抛物线向上平移4个单位后,⊙O1、⊙O2的面积分别成为S1、S2,且4S2-16S1=5π,求平移后所得抛物线的解析式;
(3)由(2)所得的抛物线与y轴交于点C,⊙O1和⊙O2的一条外公切线MN分别交x轴和y轴
于点P、Q(M、N为切点,如图所示),求△CPQ的面积.
查看习题详情和答案>>
(1)请问:⊙O1和⊙O2,能否为等圆?若能,求出其半径的长度;若不能,说明理由;
(2)设抛物线向上平移4个单位后,⊙O1、⊙O2的面积分别成为S1、S2,且4S2-16S1=5π,求平移后所得抛物线的解析式;
(3)由(2)所得的抛物线与y轴交于点C,⊙O1和⊙O2的一条外公切线MN分别交x轴和y轴
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
,
).
(1)请在横线上直接写出抛物线C2的解析式: ;
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存
在,请求出m的值;如果不存在,请说明理由.
查看习题详情和答案>>
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
| b |
| 2a |
| 4ac-b2 |
| 4a |
(1)请在横线上直接写出抛物线C2的解析式:
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
| 6 | 5 |
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由. 查看习题详情和答案>>