摘要:2.等差数列.等比数列 (1) 理解等差数列.等比数列的概念. (2)掌握等差数列.等比数列的通项公式与前n项和公式. (3)能在具体的问题情境中识别数列的等差关系或等比关系.并能用有关知识解决相应的问题. ④ 了解等差数列与一次函数.等比数列与指数函数的关系.
网址:http://m.1010jiajiao.com/timu_id_4051057[举报]
若数列
都成立,则我们把数列
称为“L型数列”.
(1)试问等差
是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列
满足
,![]()
的两根,若
,求证:数列
是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)
查看习题详情和答案>>
若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)
查看习题详情和答案>>
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)
查看习题详情和答案>>
(2009•黄浦区二模)若数列{an}满足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q为常数)对任意n∈N*都成立,则我们把数列{an}称为“L型数列”.
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)
查看习题详情和答案>>
(1)试问等差数列{an}、等比数列{bn}(公比为r)是否为L型数列?若是,写出对应p、q的值;若不是,说明理由.
(2)已知L型数列{an}满足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的两根,若b-axi≠0(i=1,2),求证:数列{an+1-xian}(i=1,2,n∈N*)是等比数列(只选其中之一加以证明即可).
(3)请你提出一个关于L型数列的问题,并加以解决.(本小题将根据所提问题的普适性给予不同的分值,最高10分)