摘要: ..在.为偶函数.试比较..的大小关系.
网址:http://m.1010jiajiao.com/timu_id_4048488[举报]
已知二次函数f(x)=ax2+bx+1和函数g(x)=
,
(1)若f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不等的实根x1,x2(x1<x2),则
①试判断函数f(x)在区间(-1,1)上是否具有单调性,并说明理由;
②若方程f(x)=0的两实根为x3,x4(x3<x4),求使x3<x1<x2<x4成立的a的取值范围. 查看习题详情和答案>>
| bx-1 | a2x+2b |
(1)若f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不等的实根x1,x2(x1<x2),则
①试判断函数f(x)在区间(-1,1)上是否具有单调性,并说明理由;
②若方程f(x)=0的两实根为x3,x4(x3<x4),求使x3<x1<x2<x4成立的a的取值范围. 查看习题详情和答案>>
已知二次函数f(x)=ax2+bx+1和g(x)=
(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)若方程g(x)=x的两实根为x1,x2f(x)=0的两根为x3,x4,求使x3<x1<x2<x4成立的a的取值范围.
查看习题详情和答案>>
| bx-1 | a2x+2b |
(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)若方程g(x)=x的两实根为x1,x2f(x)=0的两根为x3,x4,求使x3<x1<x2<x4成立的a的取值范围.
(2009•长宁区二模)设
=(x,x+1),
=(-x,m-2),函数f(x)=
•
(其中m为实常数).
(1)如果函数f(x)为偶函数,试确定函数解析式;
(2)试写出一个m的值,使函数f(x)在x∈[-2,+∞)上存在反函数,并说明理由.
查看习题详情和答案>>
| a |
| b |
| a |
| b |
(1)如果函数f(x)为偶函数,试确定函数解析式;
(2)试写出一个m的值,使函数f(x)在x∈[-2,+∞)上存在反函数,并说明理由.