摘要:1求值:(1) 选题意图:考查两角和与差三角函数公式的应用和三角函数关系式的变形能力 解:(1)原式 (2)原式 说明:在三角函数关系式的变形过程中.要注意统一角.统一函数.要注意角与角之间的和.差.倍.半关系和特殊角之间的关系等 2已知3sinβ=sin(2α+β)且tanα=1.求tan(α+β)? 选题意图:考查两角和与差的三角函数公式的应用和三角函数关系式的变形能力 解:由3sinβ=sin(2α+β)即3sin[(α+β)-α]=[sin(α+β)+α] 得:3sin(α+β)cosα-3cos(α+β)sinα =sin(α+β)cosα+cos(α+β)sinα ∴2sin(α+β)cosα=4cos(α+β)sinα ∴tan(α+β)=2tanα 又tanα=1 ∴tan(α+β)=2 说明:本题解法的关键是要注意到β=(α+β)-α.2α+β=(α+β)+α 3已知方程x2+4ax+3a+1=0(a>1)的两根分别为tanα.tanβ且α.β∈ (-).求sin2(α+β)+sin(α+β)cos(α+β)+2cos2(α+β)的值 选题意图:考查两角和三角函数公式和平方关系的应用 解:根据韦达定理 说明:解题的整个过程就是统一角.统一函数的过程 4求sin18°和cos36°的值 解:∵sin36°=cos54° 即sin=cos 2sin18°cos18°=4cos318°-3cos18° ∵cos18°≠0 ∴2sin18°=4cos218°-3 整理得4sin218°+2sin18°-1=0 说明:本题通过二倍角和三倍角公式构造了关于sin18°的方程求解.但利用sin54°=cos36°很难解出sin18°在解决三角函数问题的过程中也要适当注意一些代数方法的使用
网址:http://m.1010jiajiao.com/timu_id_4046754[举报]
本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1;
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
+y2=1,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
(∂为参数).
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小. 查看习题详情和答案>>
(1)选修4-2:矩阵与变换
设矩阵 M=
|
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1;
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
| x2 |
| 4 |
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
|
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
| π |
| 2 |
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小. 查看习题详情和答案>>
本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=
,N=
,且MN=
,
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
sinθ.
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
),
求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围. 查看习题详情和答案>>
(1)已知矩阵M=
|
|
|
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
|
| 5 |
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
| 5 |
求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围. 查看习题详情和答案>>
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
+
=1在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1:
(t为参数),C2:
(θ为参数).
(Ⅰ)当α=
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
+
+
的最大值.
查看习题详情和答案>>
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
| x2 |
| 4 |
| y2 |
| 9 |
(2)选修4一4:坐标系与参数方程
已知直线C1:
|
|
(Ⅰ)当α=
| π |
| 3 |
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
| 4a+1 |
| 4b+1 |
| 4c+1 |
四、选考题(本小题满分10分)
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
22.选修4-1:几何证明选讲
在
中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
![]()
(1)求证:
;
(2)若AC=3,求
的值。
查看习题详情和答案>>
本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵M=
,N=
,且MN=
。
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
=2
sin
。
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,
),求∣PA∣+∣PB∣。
(3)(本小题满分7分)选修4-5:不等式选讲
已知函数f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x)
3的解集为
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。