摘要: 证明:因为a//b.由推论3.存在平面.使得 又因为直线d与a.b.c分别相交于A.B.C.由公理1. 下面用反证法证明直线: 假设.则,在平面内过点C作. 因为b//c.则.此与矛盾.故直线. 综上述.a.b.c.d四线共面.
网址:http://m.1010jiajiao.com/timu_id_4042547[举报]
请先阅读:
设平面向量
=(a1,a2),
=(b1,b2),且
与
的夹角为θ,
因为
•
=|
||
|cosθ,
所以
•
≤|
||
|.
即a1b1+a2b2≤
×
,
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
+
+
)(
+
+
)成立;
(II)试求函数y=
+
+
的最大值.
查看习题详情和答案>>
设平面向量
| a |
| b |
| a |
| b |
因为
| a |
| b |
| a |
| b |
所以
| a |
| b |
| a |
| b |
即a1b1+a2b2≤
|
|
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
| a | 2 1 |
| a | 2 2 |
| a | 2 3 |
| b | 2 1 |
| b | 2 2 |
| b | 2 3 |
(II)试求函数y=
| x |
| 2x-2 |
| 8-3x |
请先阅读:
设平面向量
=(a1,a2),
=(b1,b2),且
与
的夹角为θ,
因为
•
=|
||
|cosθ,
所以
•
≤|
||
|.
即a1b1+a2b2≤
×
,
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
+
+
)(
+
+
)成立;
(II)试求函数y=
+
+
的最大值.
查看习题详情和答案>>
设平面向量
| a |
| b |
| a |
| b |
因为
| a |
| b |
| a |
| b |
所以
| a |
| b |
| a |
| b |
即a1b1+a2b2≤
|
|
当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
| a | 21 |
| a | 22 |
| a | 23 |
| b | 21 |
| b | 22 |
| b | 23 |
(II)试求函数y=
| x |
| 2x-2 |
| 8-3x |
若a>b>c,则
+
≥
证明:因为(a-c)(
+
)=(a-b+b-c)(
+
)=2+
+
∵a>b>c∴a-b>0,b-c>0;
∴
+
≥2
=2
∴2+
+
≥4∴(a-c)(
+
)≥4
因为a>c所以a-c>0
所以
+
≥
类比上述命题及证明思路,回答以下问题:
①若a>b>c>d,比较
+
+
与
的大小,并证明你的猜想;
②若a>b>c>d>e,且
+
+
+
≥
恒成立,试猜想m的最大值,并写出猜想过程,不要求证明.
查看习题详情和答案>>
| 1 |
| a-b |
| 1 |
| b-c |
| 4 |
| a-c |
证明:因为(a-c)(
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| a-b |
| 1 |
| b-c |
| b-c |
| a-b |
| a-b |
| b-c |
∵a>b>c∴a-b>0,b-c>0;
∴
| b-c |
| a-b |
| a-b |
| b-c |
|
∴2+
| b-c |
| a-b |
| a-b |
| b-c |
| 1 |
| a-b |
| 1 |
| b-c |
因为a>c所以a-c>0
所以
| 1 |
| a-b |
| 1 |
| b-c |
| 4 |
| a-c |
类比上述命题及证明思路,回答以下问题:
①若a>b>c>d,比较
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| c-d |
| 9 |
| a-d |
②若a>b>c>d>e,且
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| c-d |
| 1 |
| d-e |
| m |
| a-e |