摘要:提出问题:一元二次方程 ax2+bx+c=0 (a≠0)的根与二次函数 y=ax2+bx+c(a≠0)的图象有什么关系?
网址:http://m.1010jiajiao.com/timu_id_4031716[举报]
(2009•崇明县二模)设椭圆C:
+
=1(a>b>0)的一个顶点坐标为A(0,-
),且其右焦点到直线y-x-2
=0的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(
,0),求证点M的所有“相关弦”的中点在同一条直线上;
(3)根据解决问题(2)的经验与体会,请运用类比、推广等思想方法,提出一个与“相关弦”有关的具有研究价值的结论,并加以解决.(本小题将根据所提出问题的层次性给予不同的分值)
查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 2 |
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(
| 1 |
| 2 |
(3)根据解决问题(2)的经验与体会,请运用类比、推广等思想方法,提出一个与“相关弦”有关的具有研究价值的结论,并加以解决.(本小题将根据所提出问题的层次性给予不同的分值)
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
(2)
解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
<0的解集.
查看习题详情和答案>>
例题:解一元二次不等式x2-9>0.
解:∵x2-9=(x+3)(x-3),
∴(x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,有
(1)
|
|
解不等式组(1),得x>3,
解不等式组(2),得x<-3,
故(x+3)(x-3)>0的解集为x>3或x<-3,
即一元二次不等式x2-9>0的解集为x>3或x<-3.
问题:求分式不等式
| 5x+1 |
| 2x-3 |
(2006•宝山区二模)给出函数f(x)=
+tx(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
时,可以将f(x)化成f(x)=a(
+x)+b(
-x)的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
+h(x),利用基本不等式研究函数F(x)的最值问题.
查看习题详情和答案>>
| x2+4 |
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
| 1 |
| 2 |
| x2+4 |
| x2+4 |
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
| g(x) |
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-
,x1•x2=
.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=
=
=
=
.
![]()
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
查看习题详情和答案>>