摘要:1.距离 空间中的距离是立体几何的重要内容.其内容主要包括:点点距.点线距.点面距.线线距.线面距.面面距.其中重点是点点距.点线距.点面距以及两异面直线间的距离.因此.掌握点.线.面之间距离的概念.理解距离的垂直性和最近性.理解距离都指相应线段的长度.懂得几种距离之间的转化关系.所有这些都是十分重要的. 求距离的重点在点到平面的距离.直线到平面的距离和两个平面的距离可以转化成点到平面的距离.一个点到平面的距离也可以转化成另外一个点到这个平面的距离. (1)两条异面直线的距离 两条异面直线的公垂线在这两条异面直线间的线段的长度.叫做两条异面直线的距离,求法:如果知道两条异面直线的公垂线.那么就转化成求公垂线段的长度. (2)点到平面的距离 平面外一点P 在该平面上的射影为P′.则线段PP′的长度就是点到平面的距离,求法:1“一找二证三求 .三步都必须要清楚地写出来.2等体积法. (3)直线与平面的距离:一条直线和一个平面平行.这条直线上任意一点到平面的距离.叫做这条直线和平面的距离, (4)平行平面间的距离:两个平行平面的公垂线段的长度.叫做两个平行平面的距离. 求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动 的思想方法.把所求的距离转化为点点距.点线距或点面距求之.其一般步骤是:①找出或作出表示有关距离的线段,②证明它符合定义,③归到解某个三角形.若表示距离的线段不容易找出或作出.可用体积等积法计算求之.异面直线上两点间距离公式.如果两条异面直线a .b 所成的角为 .它们的公垂线AA′的长度为d .在a 上有线段A′E =m .b 上有线段AF =n .那么EF =(“± 符号由实际情况选定)

网址:http://m.1010jiajiao.com/timu_id_4030340[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网