摘要:3. 0.03. 0.003.- 各项的和. 例2.将无限循环小数化为分数.
网址:http://m.1010jiajiao.com/timu_id_4027271[举报]
24、已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.
查看习题详情和答案>>
| x | 3.27 | 1.57 | -0.61 | -0.59 | 0.26 | 0.42 | -0.35 | -0.56 | 0 | 4.25 |
| y | -101.63 | -10.04 | 0.07 | 0.03 | 0.21 | 0.20 | -0.22 | -0.03 | 0 | -226.05 |
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.
两个气象台同时作天气预报,如果他们与预报准确的概率分别为0.8与0.9,那么在一次预报中,两个气象台都没预报准确的概率为( )
A.0.72 B.0.3
C.0.02 D.0.03
查看习题详情和答案>>设
,在线段
上任取两点C,D(端点
除外),将线段
分成三条线段AC,CD,DB.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称事件A)的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称事件B)的概率;
(3)根据以下用计算机所产生的20组随机数,试用随机数摸拟的方法,来近似计算(Ⅱ)中事件B的概率.
20组随机数如下:
|
|
1组 |
2组 |
3组 |
4组 |
5组 |
6组 |
7组 |
8组 |
9组 |
10组 |
|
X |
0.52 |
0.36 |
0.58 |
0.73 |
0.41 |
0. 6 |
0.05 |
0.32 |
0.38 |
0.73 |
|
Y |
0.76 |
0.39 |
0.37 |
0.01 |
0.04 |
0.28 |
0.03 |
0.15 |
0.14 |
0.86 |
|
|
11组 |
12组 |
13组 |
14组 |
15组 |
16组 |
17组 |
18组 |
19组 |
20组 |
|
X |
0.67 |
0.47 |
0.58 |
0.21 |
0.54 |
0. 64 |
0.36 |
0.35 |
0.95 |
0.14 |
|
Y |
0.41 |
0.54 |
0.51 |
0.37 |
0.31 |
0.23 |
0.56 |
0.89 |
0.17 |
0.03 |
(X是
之间的均匀随机数,Y也是
之间的均匀随机数)
查看习题详情和答案>>
已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
下列关于函数f(x)的叙述:
(1)f(x)为奇函数; (2)f(x)在[0.55,0.6]上必有零点
(3)f(x)在(-∞,-0.35]上单调递减; (4)a<0
其中所有正确命题的个数是( )
A.4
B.3
C.2
D.1
查看习题详情和答案>>
| x | 3.27 | 1.57 | -0.61 | -0.59 | 0.26 | 0.42 | -0.35 | -0.56 | 4.25 | |
| y | -101.63 | -10.04 | 0.07 | 0.026 | 0.21 | 0.20 | -0.22 | -0.03 | -226.05 |
(1)f(x)为奇函数; (2)f(x)在[0.55,0.6]上必有零点
(3)f(x)在(-∞,-0.35]上单调递减; (4)a<0
其中所有正确命题的个数是( )
A.4
B.3
C.2
D.1
查看习题详情和答案>>