摘要:2.平面内任意两点.间的距离公式 从点.分别作x轴的垂线, 与x轴交于点 (,0), (,0) 再从点,分别作y轴的垂线, 与y轴交于点, 直线, 与相交于Q点则:Q==|-| Q= =|-| 由勾股定理: 从而得.两点间的距离公式:
网址:http://m.1010jiajiao.com/timu_id_4024972[举报]
回答下列两个问题,给出例子或给出证明。
(1)对任意正整数n,在平面上是否都存在n伸不在同一条直线上的点,使得任意两点间的距离都为正整数?
(2)在平面上是否存在两两不同的无限点列组成的点集M,使得M内所有点不在同一条直线上,且M内任意两点间的距离为正整数?
查看习题详情和答案>>在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
;
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
.
其中正确命题的序号是
查看习题详情和答案>>
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
| 1 |
| 2 |
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
| 1 |
| 3 |
其中正确命题的序号是
①④⑤
①④⑤
.| π |
| 3 |
(Ⅰ)试用θ表示
| BC |
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.