摘要:17.已知..函数.(为坐标原点) (Ⅰ)求函数的解析式, (Ⅱ)求函数的最小正周期及最值, (Ⅲ)该函数图像可由的图像经过怎样的变换得来? [解析](Ⅰ) (Ⅱ).. (Ⅲ)由图象上每点横坐标缩短到原来的.而纵坐标不变.
网址:http://m.1010jiajiao.com/timu_id_4022172[举报]
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形
中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:
与
的关系为
;
(2)设
,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点![]()
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数
为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
(本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数
是
图像上的两点,横坐标为
的点
满足
(
为坐标原点).
(1)求证:
为定值;
(2)若![]()
,
求
的
值;
(3)在(2)的条件下,若![]()
,
为数列
的前
项和,若
对一切
都成立,试求实数
的取值范围.
(本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数
是
图像上的两点,横坐标为
的点
满足
(
为坐标原点).
(1)求证:
为定值;
(2)若![]()
,
求
的值;
(3)在(2)的条件下,若![]()
,
为数列
的前
项和,若
对一切
都成立,试求实数
的取值范围.
查看习题详情和答案>>