摘要:坐标变换 (1)坐标变换 在解析几何中.把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做坐标变换.实施坐标变换时.点的位置.曲线的形状.大小.位置都不改变.仅仅只改变点的坐标与曲线的方程.坐标轴的平移:坐标轴的方向和长度单位不改变.只改变原点的位置.这种坐标系的变换叫做坐标轴的平移.简称移轴. (2)坐标轴的平移公式 设平面内任意一点M.它在原坐标系xOy中的坐标是(x,y).在新坐标系x ′O′y′中的坐标是.设新坐标系的原点O′在原坐标系xOy中的坐标是(h,k).则 (1) 或 (2) 公式叫做平移公式.
网址:http://m.1010jiajiao.com/timu_id_4019976[举报]
(1)选修4-4:矩阵与变换
已知曲线C1:y=
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;
(II)若矩阵M2=
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.
查看习题详情和答案>>
已知曲线C1:y=
| 1 |
| x |
(I)求由曲线C1变换到曲线C2对应的矩阵M1;
(II)若矩阵M2=
|
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
|
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1.
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-1)20
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
|
|
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
| b 2 |
| 4 |
| c 2 |
| 9 |
(i)求证:a2+
| b 2 |
| 4 |
| c 2 |
| 9 |
| (a+b+c) 2 |
| 14 |
(ii)求实数m的取值范围. 查看习题详情和答案>>
矩阵与变换.已知矩阵A=
,A的一个特征值λ=2,属于λ的特征向量是
=
,求矩阵A与其逆矩阵.
坐标系与参数方程已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
查看习题详情和答案>>
|
| α1 |
|
坐标系与参数方程已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
|
在Excel中产生[0,1]区间上均匀随机数的函数为“rand( )”,在用计算机模拟估计函数y=sinx的图象、直线x=
和x轴在区间[0,
]上部分围成的图形面积时,随机点(a1,b1)与该区域内的点(a,b)的坐标变换公式为( )
| π |
| 2 |
| π |
| 2 |
A、a=a 1+
| ||
| B、a=2(a1-0.5)b=2(b1-0.5) | ||
C、a∈[0,
| ||
D、a=
|
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
+
=1在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1:
(t为参数),C2:
(θ为参数).
(Ⅰ)当α=
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
+
+
的最大值.
查看习题详情和答案>>
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
| x2 |
| 4 |
| y2 |
| 9 |
(2)选修4一4:坐标系与参数方程
已知直线C1:
|
|
(Ⅰ)当α=
| π |
| 3 |
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
| 4a+1 |
| 4b+1 |
| 4c+1 |