摘要:在重力忽略不计的情况下,带电粒子进入磁场的运动情况: (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr2=qVB,r=mV/qB,T=2πm/qB,(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功解题关键:画轨迹.找圆心.定半径.圆心角. 注: (1)安培力和洛仑兹力的方向均可由左手定则判定.只是洛仑兹力要注意带电粒子的正负, (2)磁感线的特点及其常见磁场的磁感线分布要掌握其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料
网址:http://m.1010jiajiao.com/timu_id_4017196[举报]
(1)有同学利用如图1的装置来验证力的平行四边形定则:在竖直木板上铺有白纸,固定两个光滑的滑轮A和B,将绳子打一个结点O,每个钩码的质量相等,当系统达到平衡时,根据钩码个数读出三根绳子的拉力TOA、TOB和TOC,回答下列问题:
a改变钩码个数,实验能完成的是

A.钩码的个数N1=N2=2,N3=4
B.钩码的个数N1=N3=3,N2=4
C.钩码的个数N1=N2=N3=4
D.钩码的个数N1=3,N2=4,N3=5
b在拆下钩码和绳子前,应该做好三个方面的记录: ; ;
(2)如图2所示装置,在探究影响平行板电容器电容的因素实验中,①充好电的平行板电容器的极板A与一静电计相接,极板B接地.若极板B稍向上移动一点,由观察到的静电计指针变化分析平行板电容器电容变小结论的依据是
A.两极板间的电压不变,极板上的电量变大
B.两极板间的电压不变,极板上的电量变小
C.极板上的电量几乎不变,两极板间的电压变大
D.极板上的电量几乎不变,两极板间的电压变小
②如图3所示为电容式传感器构件的示意图,工作时动片(电极板A)沿平行于定片(电极板B)的方向发生一小段位移s,电容C便发生变化,通过测量电容C的变化情况就可以知道位移s.如果忽略极板的边缘效应,那么在图中,能正确反映电容C和位移s间函数关系的是 .(选填选项前面的字母)

(3)某同学在探究影响单摆振动周期的因素时,针对自己考虑到的几个可能影响周期的物理量设计了实验方案,并认真进行了实验操作,取得了实验数据.他经过分析后,在实验误差范围内,找到了在摆角较小的情况下影响单摆周期的一个物理量,并通过作图象找到了单摆周期与这个物理量的明确的数量关系.该同学的实验数据记录如下:
①分析上面实验表格中的数据,你认为在摆角较小的情况下影响单摆周期的这个物理量是: .
②利用表中给出的数据,试在图4中坐标纸上画出T2与L的关系图线,该图线斜率k的表达式k= ,k的数值为k= .利用图线斜率k表示重力加速度的表达式为g= (用字母表示).
查看习题详情和答案>>
a改变钩码个数,实验能完成的是
A.钩码的个数N1=N2=2,N3=4
B.钩码的个数N1=N3=3,N2=4
C.钩码的个数N1=N2=N3=4
D.钩码的个数N1=3,N2=4,N3=5
b在拆下钩码和绳子前,应该做好三个方面的记录:
(2)如图2所示装置,在探究影响平行板电容器电容的因素实验中,①充好电的平行板电容器的极板A与一静电计相接,极板B接地.若极板B稍向上移动一点,由观察到的静电计指针变化分析平行板电容器电容变小结论的依据是
A.两极板间的电压不变,极板上的电量变大
B.两极板间的电压不变,极板上的电量变小
C.极板上的电量几乎不变,两极板间的电压变大
D.极板上的电量几乎不变,两极板间的电压变小
②如图3所示为电容式传感器构件的示意图,工作时动片(电极板A)沿平行于定片(电极板B)的方向发生一小段位移s,电容C便发生变化,通过测量电容C的变化情况就可以知道位移s.如果忽略极板的边缘效应,那么在图中,能正确反映电容C和位移s间函数关系的是
(3)某同学在探究影响单摆振动周期的因素时,针对自己考虑到的几个可能影响周期的物理量设计了实验方案,并认真进行了实验操作,取得了实验数据.他经过分析后,在实验误差范围内,找到了在摆角较小的情况下影响单摆周期的一个物理量,并通过作图象找到了单摆周期与这个物理量的明确的数量关系.该同学的实验数据记录如下:
| 摆长L/m 周期T/s 最大摆角θ/° 摆球种类及质量m/g |
0.7000 | 0.7500 | 0.8000 | 0.8500 | 0.9000 | |
| 钢球A 8.0 |
3.0 | 1.69 | 1.73 | 1.80 | 1.86 | 1.89 |
| 9.0 | 1.68 | 1.74 | 1.79 | 1.85 | 1.90 | |
| 钢球B 16.0 |
3.0 | 1.68 | 1.74 | 1.79 | 1.85 | 1.90 |
| 9.0 | 1.69 | 1.73 | 1.80 | 1.85 | 1.89 | |
| 铜球 20.0 |
3.0 | 1.68 | 1.74 | 1.80 | 1.85 | 1.90 |
| 9.0 | 1.68 | 1.74 | 1.79 | 1.85 | 1.90 | |
| 铝球 6.0 |
3.0 | 1.68 | 1.74 | 1.80 | 1.85 | 1.90 |
| 9.0 | 1.69 | 1.74 | 1.80 | 1.86 | 1.91 | |
②利用表中给出的数据,试在图4中坐标纸上画出T2与L的关系图线,该图线斜率k的表达式k=
如图所示,
、
为一对固定的平行金属导轨,其电阻忽略不计。导轨左端连接一定值电阻
,右端通过导线连接着一对固定的平行金属板,金属板板长和板间距离均为
,且金属板间距离恰好是两导轨间距离的
倍。导轨和金属板间存在方向垂直纸面向里,磁感应强度大小未知的匀强磁场。金属板左端正中间处有一电子源,不断地沿水平向右方向发射速率恒为
的电子,电子恰好沿下极板右端飞出。为保证电子沿水平方向运动,可在导轨上加一轻质金属杆
,其阻值为
,使其在金属导轨上无摩擦的左右滑动。已知电子的质量为
,电量为
,不考虑电子的重力及电子间的的相互作用。
(1)为使电子沿水平方向运动,请定性描述金属杆
的运动情况;
(2)使金属杆ab保持上述的速度运动,则作用在杆上的拉力做功的功率为多大?
![]()
如图所示,
、
为一对固定的平行金属导轨,其电阻忽略不计。导轨左端连接一定值电阻
,右端通过导线连接着一对固定的平行金属板,金属板板长和板间距离均为
,且金属板间距离恰好是两导轨间距离的
倍。导轨和金属板间存在方向垂直纸面向里,磁感应强度大小未知的匀强磁场。金属板左端正中间处有一电子源,不断地沿水平向右方向发射速率恒为
的电子,电子恰好沿下极板右端飞出。为保证电子沿水平方向运动,可在导轨上加一轻质金属杆
,其阻值为
,使其在金属导轨上无摩擦的左右滑动。已知电子的质量为
,电量为
,不考虑电子的重力及电子间的的相互作用。
(1)为使电子沿水平方向运动,请定性描述金属杆
的运动情况;
(2)使金属杆ab保持上述的速度运动,则作用在杆上的拉力做功的功率为多大?

(1)为使电子沿水平方向运动,请定性描述金属杆
(2)使金属杆ab保持上述的速度运动,则作用在杆上的拉力做功的功率为多大?
1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm;

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.
查看习题详情和答案>>
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm;
(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.
查看习题详情和答案>>
1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm;

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.
查看习题详情和答案>>
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm;
(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.
查看习题详情和答案>>