摘要: 本小题主要考察空间直线与直线.直线与平面的位置关系和二面角等基础知识.考查空间想象能力.推理论证能力和运算求解能力. (Ⅰ)证发1:连接BD.由底面是正方形可得ACBD. SD平面ABCD.BD是BE在平面ABCD上的射影. 由三垂线定理得ACBE. (II)解法1:SD平面ABCD.CD平面ABCD. SDCD. 又底面ABCD是正方形. CDAD.又SDAD=D.CD平面SAD. 过点D在平面SAD内做DFAE于F.连接CF.则CFAE. 故CFD是二面角C-AE-D 的平面角.即CFD=60° 在Rt△ADE中.AD=, DE= . AE= . 于是.DF= 在Rt△CDF中.由cot60°= 得. 即=3 . 解得=
网址:http://m.1010jiajiao.com/timu_id_4016989[举报]
(2010四川理数)(20)(本小题满分12分)
已知定点A(-1,0),F(2,0),定直线l:x=
,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.【来源:全,品…中&高*考+网】
本小题主要考察直线、轨迹方程、双曲线等基础知识,考察平面机袭击和的思想方法及推理运算能力.
查看习题详情和答案>>(辽宁卷理19)如图,在棱长为1的正方体![]()
中,AP=BQ=b(0<b<1),截面PQEF∥
,截面PQGH∥
.
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,
并求出这个值;
(Ⅲ)若
与平面PQEF所成的角为
,求
与平面PQGH所成角的正弦值.
说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.
查看习题详情和答案>>(辽宁卷理19)如图,在棱长为1的正方体![]()
中,AP=BQ=b(0<b<1),截面PQEF∥
,截面PQGH∥
.
(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,
并求出这个值;
(Ⅲ)若
与平面PQEF所成的角为
,求
与平面PQGH所成角的正弦值.
说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.
查看习题详情和答案>>