摘要:线面夹角 几何法:做射影.找出二面角.直接计算 向量法: 找出直线a及平面α的法向量n
网址:http://m.1010jiajiao.com/timu_id_4016819[举报]
如图所示的长方体
中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴利用法向量的夹角公式,
,
∴
与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接
,则点
、
,
![]()
∴
,又点
,
,∴![]()
∴
,且
与
不共线,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴
,
∴
与
的夹角为
,即二面角
的大小为![]()
查看习题详情和答案>>
. (本小题满分9分)
(如图)在底面为平行四边形的四棱锥
中,
,
平面
,且
,点
是
的中点.![]()
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)(理科学生做)求二面角
的大小.
(文科学生做)当
,
时,求直线
和平面
所成的线面角的大小.
平面几何中,同垂直于一条直线的两直线________.那么,类比到空间中有:(1)同垂直于一条直线的两条直线平行,这个命题成立吗?______.为什么?_______.(2)同垂直于一个平面的两条直线_________.这个命题是__________(填:真、假)命题.原因是:已知a⊥平面α,b⊥平面α,求证:a∥b.假设b不平行于a,设b∩α=O,b′是经过点O与直线_______平行的直线.∵a_______b′,a⊥α ,?∴b′________α,?即经过同一点O的两条直线________、_______都垂直于平面α,这是不可能的.因此,________.这种证明的方法是________法.?
命题(2)的逆命题是:如果两条平行直线中的一条垂直于一个平面,那么另一条也_________这个平面.用数学符号表示:已知a_____b,a_______平面α,求证:b______α.?
证明:设m是α内的任意一条直线.∵a________α,m
α,?
?∴a________m.又∵a_______b,∴________bm.又∵m
α,m是_______,∴由线面垂直的__________可知b______α.