摘要:直线与直线的位置关系: (1)平行且(在轴上截距), (2)相交, (3)重合且. 提醒:(1) ..仅是两直线平行.相交.重合的充分不必要条件!为什么?(2)在解析几何中.研究两条直线的位置关系时.有可能这两条直线重合.而在立体几何中提到的两条直线都是指不重合的两条直线,(3)直线与直线垂直.如(1)设直线和.当= 时∥,当= 时,当 时与相交,当= 时与重合(答:-1,,,3),(2)已知直线的方程为.则与平行.且过点的直线方程是 (答:),(3)两条直线与相交于第一象限.则实数的取值范围是 (答:),(4)设分别是△ABC中∠A.∠B.∠C所对边的边长.则直线与的位置关系是 已知点是直线上一点.是直线外一点.则方程=0所表示的直线与的关系是 直线过点(1.0).且被两平行直线和所截得的线段长为9.则直线的方程是 (答:)
网址:http://m.1010jiajiao.com/timu_id_4009527[举报]
以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
+
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
查看习题详情和答案>>
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
| x2 |
| a2 |
| y2 |
| b2 |
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号)设抛物线
:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若
,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若
,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线
于
轴的焦点为E,圆F的半径为
,
![]()
则|FE|=
,
=
,E是BD的中点,
(Ⅰ) ∵
,∴
=
,|BD|=
,
设A(
,
),根据抛物线定义得,|FA|=
,
∵
的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圆F的方程为:
;
(Ⅱ) 解析1∵
,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知
,∴
,∴
的斜率为
或-
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
设直线
的方程为:
,代入
得,
,
∵
与
只有一个公共点,
∴
=
,∴
,
∴直线
的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到
,
距离的比值为3.
解析2由对称性设
,则![]()
点
关于点
对称得:![]()
得:
,直线![]()
切点![]()
直线![]()
坐标原点到
距离的比值为![]()
查看习题详情和答案>>