摘要:定义:对命题“若p则q 而言.当它是真命题时.p是q的充分条件.q是p的必要条件.当它的逆命题为真时.q是p的充分条件.p是q的必要条件.两种命题均为真时.称p是q的充要条件,
网址:http://m.1010jiajiao.com/timu_id_4008936[举报]
(1)一般地,用p和q分别表示原命题的条件和结论,用
和
分别表示p和q的否定,于是四种命题的形式就是:?
原命题:若p则q(p
q);?
否命题:若 则 ( );?
逆命题:若 则 ( );?
逆否命题:若 则 ( ).?
(2)四种命题的关系?
?![]()
注意:①一个命题和它的逆否命题同真假,而与它的其他三个命题的真假无此规律.?
②要严格区别命题的否定与否命题之间的差别.?
对一个命题进行否定,就要对正面叙述的词语进行否定,而否命题既否定条件又否定结论.例如,原命题“若∠A=∠B,则a=b”的否定形式为“若∠A=∠B,则a≠b”,而其否命题则为“若∠A≠∠B,则a≠b”.?
(3)反证法?
①定义: .?
②使用反证法的条件.?
(ⅰ)直接证困难较大时;?
(ⅱ)当待证命题的结论中出现“不可能”“不是”“至少”“至多”“唯一”等限制性很强的条件时.?
③一般步骤:?
(ⅰ) ;?
(ⅱ) .
查看习题详情和答案>>给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面上所对应点的轨迹是椭圆.
②设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
③已知曲线C:
-
=1和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
④设定义在R上的两个函数f(x)、g(x)都有最小值,且对任意的x∈R,命题“f(x)>0或g(x)>0”正确,则f(x)的最小值为正数或g(x)的最小值为正数.
上述命题中错误的个数是( )
查看习题详情和答案>>
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面上所对应点的轨迹是椭圆.
②设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
③已知曲线C:
|
|
④设定义在R上的两个函数f(x)、g(x)都有最小值,且对任意的x∈R,命题“f(x)>0或g(x)>0”正确,则f(x)的最小值为正数或g(x)的最小值为正数.
上述命题中错误的个数是( )
(2013•闵行区二模)给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面的对应点的轨迹是椭圆.
②若对任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,则数列{an}是等差数列或等比数列.
③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
④已知曲线C:
-
=1和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
上述命题中错误的个数是( )
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面的对应点的轨迹是椭圆.
②若对任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,则数列{an}是等差数列或等比数列.
③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
④已知曲线C:
|
|
上述命题中错误的个数是( )
查看习题详情和答案>>