摘要:已知f(x)=x2-x+c定义在区间[0.1]上.x1.x2∈[0.1].且x1≠x2.求证: (1)f(0)=f(1), (2)| f(x2)-f(x1)|<|x1-x2|, (3)| f(x1)-f(x2)|<, (4)| f(x1)-f(x2)|≤. 证明:(1)f(0)=c.f(1)=c. ∴f(0)=f(1). (2)| f(x2)-f(x1)|=|x2-x1||x2+x1-1|. ∵0≤x1≤1.∴0≤x2≤1.0<x1+x2<2(x1≠x2). ∴-1<x1+x2-1<1. ∴| f(x2)-f(x1)|<|x2-x1|. (3)不妨设x2>x1.由(2)知 | f(x2)-f(x1)|<x2-x1. ① 而由f(0)=f(1).从而 | f(x2)-f(x1)|=| f(x2)-f(1)+f(0)-f(x1)| ≤| f(x2)-f(1)|+| f(0)-f(x1)|<|1-x2|+|x1|<1-x2+x1. ② ①+②得2| f(x2)-f(x1)|<1. 即| f(x2)-f(x1)|<. (4)|f(x2)-f(x1)|≤fmax-fmin=f(0)-f()=.

网址:http://m.1010jiajiao.com/timu_id_3999991[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网