摘要:灵活运用绝对值不等式两个重要性质定理.特别关注等号成立的条件. 同步练习 6.6含绝对值的不等式 [选择题]
网址:http://m.1010jiajiao.com/timu_id_3999981[举报]
解不等式: ![]()
【解析】本试题主要是考查了分段函数与绝对值不等式的综合运用。利用零点分段论 的思想,分为三种情况韬略得到解集即可。也可以利用分段函数图像来解得。
解:方法一:零点分段讨论:
方法二:数形结合法:![]()
查看习题详情和答案>>
(2006•宝山区二模)给出函数f(x)=
+tx(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
时,可以将f(x)化成f(x)=a(
+x)+b(
-x)的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
+h(x),利用基本不等式研究函数F(x)的最值问题.
查看习题详情和答案>>
| x2+4 |
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
| 1 |
| 2 |
| x2+4 |
| x2+4 |
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
| g(x) |