摘要:含绝对值不等式的证明.要善于应用分析转化法
网址:http://m.1010jiajiao.com/timu_id_3999980[举报]
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
查看习题详情和答案>>
设A={x||x-1|<2},B={x|
>0},则A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.
查看习题详情和答案>>