摘要: 已知x 2, 是一次函数且为增函数, 若 则 .
网址:http://m.1010jiajiao.com/timu_id_3993940[举报]
已知以下四个命题:
①如果x1,x2是一元二次方程的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若f(x)是奇函数,则f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是 (填上你认为正确的序号).
查看习题详情和答案>>
①如果x1,x2是一元二次方程的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若f(x)是奇函数,则f(0)=0;
③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是
已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间(0,
)上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间(0,
)上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.
查看习题详情和答案>>
(1)(i) 问函数y=sinx+cosx是否是区间(0,
| π |
| 4 |
(ii)证明函数y=sinx是区间(0,
| π |
| 4 |
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.