摘要: 解: (1) 因为是函数的一个极值点, 所以 , 即所以 知, 当时, 有当x变化时.与的变化如下表: 故有上表知, 当时, 在单调递减, 在单调递增, 在 上单调递减. (3) 由已知得, 即 又所以, 即--① 设 其函数开口向上, 由题意知①式恒成立, 所以, 即m的取值范围为.
网址:http://m.1010jiajiao.com/timu_id_3993865[举报]
已知函数
,
.
(Ⅰ)若函数
依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在
处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数
,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
![]()
(2)不等式
,即
,即
.
转化为存在实数
,使对任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
设
,则.![]()
设
,则
,因为
,有
.
故
在区间
上是减函数。又![]()
故存在
,使得
.
当
时,有
,当
时,有
.
从而
在区间
上递增,在区间
上递减.
又
[来源:]
![]()
所以当
时,恒有
;当
时,恒有![]()
;
故使命题成立的正整数m的最大值为5
查看习题详情和答案>>