摘要:(13) 已知函数 为sinx与cosx中的较大者.设a≤f(x)≤b,则a+b= (15) 函数的图象恒过定点.若点在角的终边上,.则= (16) 不共线的向量.的模都为2.若..则两向量与 的夹角为
网址:http://m.1010jiajiao.com/timu_id_3990829[举报]
已知向量
=(sin(x+
),sinx),
=(cosx,-sinx),函数f(x)=m(
•
+
sin2x),(m为正实数).
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
个单位得到y=g(x)的图象,试探讨:当x⊆[0,π]时,函数y=g(x)与y=1的图象的交点个数.
查看习题详情和答案>>
| a |
| π |
| 2 |
| b |
| a |
| b |
| 3 |
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
| π |
| 6 |
已知向量
=(sin(x+
),sinx),
=(cosx,-sinx),函数f(x)=m,(m为正实数).
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
个单位得到y=g(x)的图象,试探讨:当x⊆[0,π]时,函数y=g(x)与y=1的图象的交点个数.
查看习题详情和答案>>
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
查看习题详情和答案>>
已知向量
=(sin(x+
),sinx),
=(cosx,-sinx),函数f(x)=m,(m为正实数).
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
个单位得到y=g(x)的图象,试探讨:当x⊆[0,π]时,函数y=g(x)与y=1的图象的交点个数.
查看习题详情和答案>>
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
查看习题详情和答案>>