摘要:已知为坐标原点,点F.T.M.P分别满足. (1) 当t 变化时,求点P的轨迹方程; (2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F, 求直线BC的方程.
网址:http://m.1010jiajiao.com/timu_id_3987546[举报]
(本小题满分14分)
已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。
(Ⅰ)求这三条曲线方程;
(Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。
查看习题详情和答案>>(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N,
= 2
.
(Ⅰ)求动点Q的轨迹
的方程;
(Ⅱ)设点
,点
为曲线
上任一点,求点
到点
距离的最大值
;
(Ⅲ)在
的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
满足
,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
(本小题满分14分)
已知二次函数
的图象经过坐标原点,与
轴的另一个交点为
,且
,数列
的前
项的和为
,点
在函数
的图象上.
(1)求函数
的解析式;
(2)求数列
的通项公式;
(3)设
,求数列
的前
项和
.