摘要:设数列{an}满足a1++-+=a2n-1,{an}的前n项和为Sn(a>0,a≠1,n∈N*). (1)求an; (2)求, (3)求证:(n+2)(n+1)an+n(n+2)an+1<2n(n+1)an+2
网址:http://m.1010jiajiao.com/timu_id_3987310[举报]
已知数列{an}满足:a1=1,an+1=![]()
(1)求a2,a3
(2)设bn=a2n+1+4n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;
(3)求数列{an}前100项中的所有奇数项的和S.
已知数列{an}与{bn}满足:
,n∈N*且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)设Cn=a2n+1-a2n-1,n∈N*证明{Cn}是等比数列;
(Ⅲ)设Sn为{an}的前n项和,证明:![]()
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有
a2m-1+a2n-1=2am+n-1+2(m-n)2
(Ⅰ)求a3,a5;
(Ⅱ)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(Ⅲ)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.