摘要: (1)∵△ABC为等腰三角形 ∴AC=BC ∠CAB=∠CBA 又∵CH为底边上的高.P为高线上的点 ∴PA=PB ∴∠PAB=∠PBA ∵∠CAE=∠CAB-∠PAB ∠CBF=∠CBA-∠PBA ∴∠CAE=∠CBF (2)∵AC=BC ∠CAE=∠CBF ∠ACE=∠BCF ∴△ACE-△BCF(AAS) ∴AE=BF (3)若存在点P能使S△ABC=S△ABG.因为AE=BF.所以△ABG也是一个等腰三角形.这两个三角形面积相等.底边也相同.所以高也相等.进而可以说明△ABC-△ABG.则对应边AC=AE,∠ACE=∠AEC,所以0°≤∠C<90°

网址:http://m.1010jiajiao.com/timu_id_3982547[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网