摘要: 函数的极大值大于,且在区间上无零点.则实数的取值范围为 .
网址:http://m.1010jiajiao.com/timu_id_3979131[举报]
理科(本小题14分)已知函数
,当
时,函数
取得极大值.
(Ⅰ)求实数
的值;(Ⅱ)已知结论:若函数
在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;(Ⅲ)已知正数
满足
求证:当
,
时,对任意大于
,且互不相等的实数
,都有![]()
查看习题详情和答案>>
理科已知函数
,当
时,函数
取得极大值.
(Ⅰ)求实数
的值;(Ⅱ)已知结论:若函数
在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;(Ⅲ)已知正数
满足
求证:当
,
时,对任意大于
,且互不相等的实数
,都有![]()
查看习题详情和答案>>
已知函数
,当
时,函数
取得极大值.
(1)求实数
的值;
(2)已知结论:若函数
在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;
(3)已知正数
,满足
,求证:当
,
时,对任意大于
,且互不相等的实数
,都有![]()
.
查看习题详情和答案>>
(2012•江西模拟)已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
.试用这个结论证明:若-1<x1<x2,函数g(x)=
(x-x1)+f(x1),则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ1+λ2+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).
查看习题详情和答案>>
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
| f(b)-f(a) |
| b-a |
| f(x1)-f(x2) |
| x1-x2 |
(3)已知正数λ1,λ2,…,λn,满足λ1+λ2+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).