摘要:为了研究失重情况下男女飞行员晕飞船的情况.抽取了89名被试者.他们的晕船情况汇总如下表.根据独立性假设检验的方法. 认为在失重情况下男性比女性更容易晕船 晕机 不晕机 合计 男性 23 32 55 女性 9 25 34 合计 32 57 89
网址:http://m.1010jiajiao.com/timu_id_3979128[举报]
某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
若数学成绩90分以上为优秀,物理成绩85分(含85分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表:
(Ⅱ)根据题(1)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
②独立性检验随机变量K2值的计算公式:K2=
.
查看习题详情和答案>>
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
| 序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
(Ⅰ)根据上表完成下面的2×2列联表:
| 数学成绩优秀 | 数学成绩不优秀 | 合计 | |
| 物理成绩优秀 | |||
| 物理成绩不优秀 | 12 | ||
| 合计 | 20 |
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
| P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
(2013•闵行区一模)科学研究表明:一般情况下,在一节40分钟的课中,学生的注意力随教师讲课的时间变化而变化.开始上课时,学生的注意力逐步增强,随后学生的注意力开始分散.经过实验分析,得出学生的注意力指数y随时间x(分钟)的变化规律为:y=f(x)=
(1)如果学生的注意力指数不低于80,称为“理想听课状态”,则在一节40分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)
(2)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,那么,教师上课后从第几分钟开始讲解这道题?(精确到1分钟)
查看习题详情和答案>>
|
(1)如果学生的注意力指数不低于80,称为“理想听课状态”,则在一节40分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)
(2)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,那么,教师上课后从第几分钟开始讲解这道题?(精确到1分钟)
某课题组为了研究学生的数学成绩和物理成绩之间的关系,随即抽取该市高二年级20名学生某次考试成绩,统计得2×2列联表如下(单位:人):
(1)根据表格数据计算,在犯错误的概率不超过0.05的前提下,是否认为学生的数学成绩和物理成绩之间有关系?
(2)若数学、物理成绩都优秀的学生为A类生,随即抽取一个学生为A类生的概率为
.为了了解A类生的有关情况,现从全市高二年级学生中每次随机抽取1人,直到抽取到A类生为止,求抽取人数不超过3人次的概率.
查看习题详情和答案>>
| 数学 优秀 | 数学 不优秀 | 合计 | |
| 物理优秀 | 5 | 2 | 7 |
| 物理不优秀 | 3 | 10 | 13 |
| 合计 | 8 | 12 | 20 |
(2)若数学、物理成绩都优秀的学生为A类生,随即抽取一个学生为A类生的概率为
| 1 |
| 4 |
某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
则随机变量K2=
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
查看习题详情和答案>>
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
(1)根据上表完成下面的2×2列联表(单位:人):
| 数学成绩优秀 | 数学成绩不优秀 | 合计 | |
| 物理成绩优秀 | |||
| 物理成绩不优秀 | |||
| 合计 | 20 |
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
| y1 | y2 | 合计 | |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| 合计 | a+c | b+d | a+b+c+d |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
②独立检验随机变量K2的临界值参考表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000 株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:
|
|
高茎 |
矮茎 |
合计 |
|
圆粒 |
11 |
19 |
30 |
|
皱粒 |
13 |
7 |
20 |
|
合计 |
24 |
26 |
50 |
(1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
|
P(K2≥k) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
k |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
,其中
)
查看习题详情和答案>>