摘要:(二)主要方法: 1.求函数解析式的题型有: (1)已知函数类型.求函数的解析式:待定系数法, (2)已知求或已知求:换元法.配凑法, (3)已知函数图像.求函数解析式, (4)满足某个等式.这个等式除外还有其他未知量.需构造另个等式:解方程组法, (5)应用题求函数解析式常用方法有待定系数法等. 2.求函数定义域一般有三类问题: (1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合, (2)实际问题:函数的定义域的求解除要考虑解析式有意义外.还应考虑使实际问题有意义, (3)已知的定义域求的定义域或已知的定义域求的定义域: ①掌握基本初等函数(尤其是分式函数.无理函数.对数函数.三角函数)的定义域, ②若已知的定义域.其复合函数的定义域应由解出.
网址:http://m.1010jiajiao.com/timu_id_3976449[举报]
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
查看习题详情和答案>>