摘要:实数a的算术平方根的表示方法: ,平方根的表示方法 ,任意实数a的立方根的表示方法 .
网址:http://m.1010jiajiao.com/timu_id_3972558[举报]
(1)在实数范围内因式分解:5x2-8xy+2y2= .
(2)若三角形的三边长为a、b、c,设p=
(a+b+c),可根据海伦公式S=
,求这个三角形的面积.当a=7,b=8,c=10时,用科学记算器求这个三角形的面积S= .(结果精确到0.001)
查看习题详情和答案>>
(2)若三角形的三边长为a、b、c,设p=
| 1 |
| 2 |
| p(p-a)(p-b)(p-c) |
阅读理解,回答问题.
在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例如:在比较m2+1与m2的大小时,小东同学的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2.
请你参考小东同学的作法,解决如下问题:
(1)请你比较4
与(2+
)2的大小;
(2)已知a、b为实数,且ab=1,设M=
+
,N=
+
,试比较M、N的大小;
(3)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大7岁,爸爸同事的年龄是小明年龄的5倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”? 查看习题详情和答案>>
在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例如:在比较m2+1与m2的大小时,小东同学的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2.
请你参考小东同学的作法,解决如下问题:
(1)请你比较4
| 3 |
| 3 |
(2)已知a、b为实数,且ab=1,设M=
| a |
| a+1 |
| b |
| b+1 |
| 1 |
| a+1 |
| 1 |
| b+1 |
(3)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大7岁,爸爸同事的年龄是小明年龄的5倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”? 查看习题详情和答案>>